STRUCTURE OF BREYNOLIDE

Kyoyu Sasakı and Yoshimasa Hirata

Chemical Institute, Faculty of Science, Nagoya University,

Chikusa, Nagoya, Japan

(Received in Japan 12 May 1973; received in UK for publication 24 May 1973)

Extraction of <u>Breynia officinalis</u> Hemsl has yielded a bioactive sulfur-containing glycoside, breynin A,¹ C₄₀H₅₆O₂₃S, m p 142-144°

Hydrolysis of breynin A with hydrochloric acid (3N) gave an aglycone, breynogenin¹ $(C_{22}H_{26}O_{9}S, m p 260-262^{\circ})$, which was further hydrolyzed to p-hydroxybenzoic acid and breynolide¹ (1), $C_{15}H_{22}O_{7}S, m p 241-243^{\circ}, v_{max}$ (kBr) 1780 (C=0) cm⁻¹ The n m r spectrum (δ , 60 MHz, DMSO-d_{6}) of (1) showed signals for CH₃-CH (0 83, d, J=11 Hz), O-C<u>H</u> (4 10, s), C-O<u>H</u> (5 55,s), and three CH-O<u>H</u> (4 88, 4 80, 4 05) The difficulty in clarifying the structure of (1) by chemical methods stimulated us to the present X-ray crystallographical study we have established the crystal structure of breynolide by direct phase determination

Recrystallization from ethylacetate afforded colorless monoclinic crystals elongated along the <u>c</u>-axis giving the unit cell dimensions of <u>a</u>=13 434 Å, <u>b</u>=8 628 Å, <u>c</u>=6 652 Å, β =91 08° and space group <u>P</u>2₁, <u>D</u>_c 1 492 g cm⁻³, <u>D</u>_m 1 485 g cm⁻³ (in n-hexane and CC1₄) with two molecules in the unit cell

Lattice constants and intensities were measured on a Hilger & Watts four-circle automatic diffractometer Y-290 with Cu-K α radiation A total of 1614 independent non-zero intensities were collected in the range, $0<78^{\circ}$, and then the structure was solved by the symbolic addition procedure ² Refinement of the structural parameters were carried out by the block-diagonal least-squares calculations with anisotropic thermal parameters, and the final <u>R</u>-factor was 7 07% The hydrogen atoms were given constant anisotropic thermal factors equal to those of the heavier atoms to which they were attached The molecular shape of breynolide is shown in Fig 1

The ring system of breynolide is novel one and the most interesting feature in the

2439

Fig 1 Structure of breynolide

chemical structure is the five- and the six-membered ketal rings formed from a ketone group at C-9 and two hydroxyl groups at C-13 and C-16 The unique sesquiterpene skeleton could be constructed biogenetically by the cyclization of farnesyl pyrophosphate followed by the rearrangement from 8 - 16 bond to 7 - 16

The absolute configuration of breynolide was determined by Bijvoet's method,³ based on the sulfur ($\Delta f''=0$ 6) and the oxygen ($\Delta f''=0$ 1) The differences between Friedel pairs were measured on a Hilger & Watts diffractometer with Cu-<u>K</u> α radiation In Table 1, the square root of counted intensity, G, is reported for Friedel pairs The G values have not been

Fig 2 Bond lengths (Å) of breynolide The range of their e s d 's is 0 009 ~ 0 014 Å

Fig. 3 Bond angles (°) of breynolide The range of their e s d 's is 0.5 - 0.8° $\,$

placed on an absolute scale or corrected for Lp factors These corrections will not affect the calculation of the percentage deviation from Friedel's low, as expressed by the parameter, Δ

$$\Delta = \frac{100[|F(\bar{h}k\bar{\iota})| - |F(hk\iota)|]}{[\frac{|F(\bar{h}k\bar{\iota})| + |F(hk\iota)|}{2}]}$$

The values of Δ_{obs} are listed in Table 1, along with values of Δ_{calc} for the proper enantiomorph. The structure in Fig. 1 shows the correct absolute configuration of breynolide

h	k	l	G(hk %)	G(ħkī)	∆(obs)	∆(calc)	h	k	l	G (hkl)	G(ĥkĒ)	∆(obs)	∆(calc)
1	2	1	187	172	-84	-6 1	7	2	1	96	92	-4 3	-58
1	3	2	157	152	-32	-4 6	-1	2	2	122	117	-4.2	-49
2	1	2	140	135	-36	-65	-1	4	1	198	186	-63	-70
2	1	3	168	178	58	42	-2	2	1	210	219	4.2	46
2	3	2	95	100	5.1	4 0	-2	2	2	165	160	-31	-5 1
2	4	3	103	97	-6 0	-70	-4	4	2	80	86	72	47
3	1	2	143	135	-58	-4 2	-6	2	4	89	95	65	75
3	4	1	196	206	50	53	-7	2	1	149	155	39	62
4	3	2	96	90	-65	-80	-7	2	2	81	77	-51	-65
4	4	1	141	147	42	71	-8	3	1	84	80	-49	-47
6	3	2	101	93	-82	-6.8	-10	2	1	105	101	-39	-4 6

Table 1 Observed and calculated Bijvoet differences (percentages) for breynolide

Acknowledgment — The authors are indebted to Bristol-Banyu Research Institute Ltd , for the crystal sample

REFERENCES AND FOOTNOTE

- 1 The full detail of breynins, breynogenin and breynolide will be reported elsewhere from Bristol-Banyu Research Institute
- 2 (a) J Karle and I L Karle, <u>Acta Cryst</u>, 21, 849 (1966)
 (b) K Sasaki and Y Hirata, <u>Acta Cryst</u>, <u>B29</u>, 547 (1973)
- 3 J M Bijvoet, A F Peerdeman, and A J van Bommel, <u>Nature</u>, 168, 271 (1951)